Πέμπτη 19 Οκτωβρίου 2017

Ίππαρχος ο Νικαεύς (ή Ρόδιος), η απαρχή της Μαθηματικής Αστρονομίας, του Περικλή Δ. Λιβά (μέρος 3ον ) - Hipparchus, Nicholas (or Rhodes), the beginning of Mathematical Astronomy, Pericles D. Livas (part 3) - Hipparchus, Nicholas (o Rodi), l'inizio dell'astronomia matematica, Pericles D. Livas (parte 3) - Hiparco, Nicolás (o Rodas), el comienzo de la Astronomía Matemática, Pericles D. Livas (parte 3)

Ίππαρχος ο Νικαεύς (ή Ρόδιος), η απαρχή της Μαθηματικής Αστρονομίας, του Περικλή Δ. Λιβά (μέρος 3ον )

Φαινόμενο του Αράτου
Εικόνα: Ένας λαγός, καθ’ υπόδειξη του Αράτου, στα πόδια του κυνηγού Ωρίωνα. Ο λαγός αντιστοιχεί στον Λαγωό, αστερισμό που σημειώθηκε από τον Πτολεμαίο. Για τον Άρατο ήταν ένας από τους αμυδρούς αστερισμούς που χαρακτήριζε ως γλαυκούς. Πρόκειται για ασυνήθιστη απεικόνιση από αντίγραφο του 816 μ.Χ, της εικονογραφημένης αστρονομικής πραγματείας του Ιουλίου Καίσαρα με το προσωνύμιο Γερμανικός, γνωστή με τις ονομασίες Leiden, Universiteitsbibliotheek, VLQ 79 ή Leiden Aratea, βασισμένη στα Φαινόμενα του Αράτου. Το 1690 αγοράσθηκε από το πανεπιστήμιο της πόλης ολλανδικής πόλης Leiden, στο γεγονός αυτό δε, οφείλει το όνομά της. Το χειρόγραφο περιέχει χρωματιστές απεικονίσεις αστερισμών, αλλά καθώς πρόκειται για ποίημα και όχι αστρικό κατάλογο, ο καλλιτέχνης απέδωσε ελεύθερα τις φιγούρες των αστερισμών, δίνοντας ελάχιστη σημασία στα επίσημα παρατηρησιακά δεδομένα της εποχής.
Ο Ελληνικός κόσμος πριν τον Ίππαρχο
“…πόλον μν γρ κα γνώμονα κα τ δυώδεκα μέρεα τς μέρης παρ Βαβυλωνίων μαθον ο λληνες” Ηροδότου, στοριν δευτέρα πιγραφόμενη Ετέρπη 109.3
Οι Έλληνες χρησιμοποιούσαν παρόμοια αν όχι ίδια, όργανα όπως αυτά της Αιγύπτου και της Μεσοποταμίας, τα οποία μαζί με δικά τους παρατηρησιακά δεδομένα, χρησιμοποίησαν για την ανάπτυξη διαφορετικής προσέγγισης. Στην Βαβυλωνία και την Αίγυπτο, η μελέτη των ουράνιων σωμάτων αφορούσε σχεδόν αποκλειστικά θρησκευτικούς και αστρολογικούς σκοπούς ενώ η αστρονομική σπουδή των Ελλήνων, στόχευε στην κατανόηση του σύμπαντος.
Ο Θαλής είχε προτείνει ότι ο ανθρώπινος νους είχε την δυνατότητα να κατανοήσει τον κόσμο και η πεποίθηση αυτή αποτελεί ορόσημο για την εγκατάλειψη της επικρατούσας άποψης, ότι κάτι τέτοιο δεν ήταν εφικτό και οι αρχικές αιτίες των φυσικών φαινομένων θα παρέμεναν για πάντα μυστηριώδεις. Μετά τον Θαλή, ο Πυθαγόρας εισηγήθηκε, ότι πολλά από τα φαινόμενα αυτά θα μπορούσαν να κατανοηθούν με την χρήση μαθηματικών αρχών, όπως γινόταν άλλωστε στην περίπτωση των μουσικών φθόγγων. Αμφότεροι είχαν εισάγει στην ελληνική νόηση κάτι πρωτάκουστο. Το σύμπαν ήταν κατανοητό και οι νόμοι στους οποίους υπάκουε ήταν μαθηματικοί. Έκτοτε η διδασκαλία των Ελλήνων αναλωνόταν στην προσπάθεια κατανόησης του κόσμου, μέσω γεωμετρικών σχημάτων.
Ο Αναξίμανδρος πίστευε ότι το σύμπαν ήταν φτιαγμένο από τροχούς γεμάτους φωτιά και ο ήλιος, η σελήνη και άλλα φωτεινά ουράνια σώματα, ήταν τρύπες στους τροχούς από τις οποίες γίνονταν ορατές οι φλόγες, φέρεται δε να παρουσιάζει πρώτος το γνώμονα στους Έλληνες, τον οποίο ο Εύδοξος χρησιμοποίησε για τις αζιμουθιακές παρατηρήσεις του (με τον αζιμουθιακό υπολογισμό, τον πλέον ορθό, χρεώνεται ο Ίππαρχος) σχετικές με τον ανατέλλοντα ήλιο, ενώ οπόλος, ημισφαιρική αναπαράσταση του ουράνιου θόλου ενίοτε λαξευμένη σε συμπαγή επιφάνεια,  ήταν επίσης γνωστός.
Σχηματική αναπαράσταση του αζιμουθίου (wikipedia)
Περί το 300 π.Χ ο γεωμέτρης Παρμενίων ο Μακεδών επινόησε ηλιακό ρολόι που μπορούσε να χρησιμοποιηθεί σε διαφορετικά γεωγραφικά πλάτη.
Οι Έλληνες προσπάθησαν να εξακριβώσουν την σύσταση του κόσμου και να εξηγήσουν (αν όχι να περιγράψουν με μαθηματικές μεθόδους) τα φαινόμενα που παρατηρούσαν. Ιδού κάποια από τα θεμελιώδη βήματα προς αυτή την κατεύθυνση: πρώτη εξήγηση για τις ηλιακές εκλείψεις έρχεται από τον Θαλή με την επικάλυψη του ηλίου από την σελήνη. Ο Παρμενίδης δίδαξε το σφαιρικό σχήμα της γης και ότι το φεγγάρι αντανακλά το φώς που δέχεται στην επιφάνειά του από τον ήλιο. Ο Αναξαγόρας παρείχε ορθή επεξήγηση των φάσεων της σελήνης. Ο Πυθαγόρας διατύπωσε ότι οι πλανήτες κινούνται σε ξεχωριστές τροχιές κεκλιμένες προς τον ουράνιο ισημερινό και οι διάδοχοί του, ότι ακολουθούν ανάδρομη πορεία προς τα σταθερά άστρα από την δύση προς την ανατολή. Ο Φιλόλαος (ο Κροτωνιάτης) πίστευε ότι οι εκλείψεις της σελήνης είναι δυνατόν να προέρχονται από το πέρασμα της μέσα από την σκιά της γης, πρότεινε δε πρώτος την κίνηση της, κυκλικά γύρω από το κεντρικόν πύρ το οποίο δεν ήταν ο ήλιος αλλά τουναντίον παρέμενε κρυμμένο πίσω από μια αντι-γή που παρεμβαλλόταν σε αυτό και τη γή.
  Ο Πλάτων βοήθησε τα μέγιστα στην διάδοση των Πυθαγορείων θεωρημάτων για το σφαιρικό σχήμα της γης  και τις ανάδρομες τροχιακές κινήσεις (από την δύση προς την ανατολή)  Διατύπωσε ότι η εκλειπτική διακρινόταν από τον ισημερινό και επηρέασε την ανάπτυξη της αστρονομίας παρόλο που δεν ήταν αστρονόμος. Πρότεινε ότι το τέλειο σφαιρικό σχήμα δεν ανήκε μόνο στα ουράνια σώματα αλλά και στις τροχιές τους, οι οποίες ήταν συνδυασμός κυκλικών κινήσεων. Υποστήριξε επίσης ότι η πραγματικότητα που βλέπουμε είναι παραμορφωμένη εκδοχή της τέλειας.
  Επηρεασμένοι από τον Πλάτωνα, οι μεταγενέστεροι Έλληνες αστρονόμοι προσπάθησαν να περιγράψουν τις ουράνιες κινήσεις μέσα από τις αρχές της κυκλικής κίνησης. Το σύμπαν των αρχαίων Ελλήνων περιελάμβανε πέραν της γής όλα τα υπόλοιπα ορατά ουράνια σώματα. Για κάποιους οι σφαίρες δεν ήταν πραγματικές αλλά μαθηματικές ιδέες ώστε να περιγραφεί η κίνηση του συμπαντικού μοντέλου, ενώ για άλλους αντιπροσώπευαν υπαρκτά αντικείμενα από άριστο ουράνιο υλικό. Ο Αριστοτέλης χώρισε το σύμπαν σε δύο μέρη, τη γή και τους  ουρανούς.  Η πρώτη ήταν ατελής και μεταβαλλόμενη αλλά οι δεύτεροι το αντίθετο. Η σελήνη οριοθετούσε τα δύο μέρη.
  Η γη για τον Αριστοτέλη ήταν το κέντρο του σύμπαντος, αρχέτυπο που αργότερα αποκαλέσθηκε γεωκεντρικό, ακίνητη και σφαιρική εξαιτίας της πάντοτε σφαιρικής σκιάς της που φανερωνόταν κατά την διάρκεια των σεληνιακών εκλείψεων. Ο Μέτων έκανε καλή εκτίμηση του ηλιακού και των σεληνιακών κύκλων, χρεώνεται δε την ανακάλυψη ότι ο ήλιος, δεν διαγράφει την τροχιά του καθενός από τα τέσσερα τεταρτημόρια της τροχιάς του σε ίσο χρονικό διάστημα, μεταξύ ισημεριών και ηλιοστασίων. Ο Εύδοξος παρατήρησε την κίνηση της σελήνης σημειώνοντας ότι δεν ακολουθούσε την ίδια διαδρομή ανάμεσα στα άστρα από μήνα σε μήνα, αποτίμησε την παλινδρόμηση των κόμβων (σημείων συνάντησης με την εκλειπτική) της Σεληνιακής τροχιάς σε 18,5 χρόνια και ήταν ενήμερος για τις μεταβολές της ταχύτητας της σελήνης κατά γεωγραφικό μήκος.
  Εκτίμησε την διάρκεια του έτους σε 365,25 ημέρες, γνώριζε της περιόδους περιστροφής των πλανητών, τις θέσεις και τα τόξα παλινδρόμησης τους (εκτός του πλανήτη Άρη) όπως επίσης τις κατά (γεωγραφικό) μήκος κινήσεις τους, αλλά ωστόσο, δεν γνώριζε τις μεταβολές της τροχιακής τους ταχύτητας. Υπολόγισε στις 24° τη γωνία ανάμεσα στον ισημερινό και την εκλειπτική. Ο Κάλλιππος, μαθητής του Ευδόξου, βελτίωσε τον ηλιακό και σεληνιακό κύκλο του Μέτωνα (ακριβής γνώση της διάρκειας των περιφορών του φεγγαριού) έδωσε καλύτερες τιμές στη διάρκεια των εποχών (απόκλιση μικρότερη της μιας ημέρας) βελτίωσε την μέθοδο του Ευδόξου σχετικά με τον πλανήτη Άρη και μερίμνησε ιδιαιτέρως για τις σεληνιακές εκλείψεις και την ανισοτιμία στην περιφορά της.
  Αμφότεροι Εύδοξος και Κάλλιππος εργάσθηκαν στα πλαίσια που έθεταν θεωρία και παρατήρηση, ενός θεμελιακού διπόλου για την νεογέννητη επιστημονική μεθοδολογία. Η μεταγενέστεροι του Αριστοτέλη, πρόσεξαν την διακύμανση στη λαμπρότητα της Αφροδίτης και του Άρη, όπως επίσης την μεταβολή στην διάμετρο της σελήνης (με αναφορά τις ολικές ή μερικές εκλείψεις της. Ο Άρης ήταν πάντοτε φωτεινότερος κατά την μεσουράνησή του τα μεσάνυχτα (αντίκρυ στον ήλιο): ο Ηρακλείδης ο Ποντικός και ο Απολλώνιος ο Περγαίος εισηγήθηκαν την θεωρία των έκκεντρων κύκλων και επικύκλων.
Για τον Ηρακλείδη, η γή περιστρεφόταν γύρω από τον εαυτό της σε 24 ώρες και η Αφροδίτη κυκλικά γύρω από τον ήλιο, γεγονός από το οποίο προέκυπτε η μεταβλητότητα της λαμπρότητός της. ΟΑρίσταρχος ο Σάμιος υπολόγισε τα θερινά ηλιοστάσια και τις προκύπτουσες αποστάσεις σε σχέση με τη γη από παρατηρήσεις του για τον ήλιο και τη σελήνη. Συνδύασε παρατηρησιακά με μαθηματικά δεδομένα και ήταν ο πρώτος που διατύπωσε ηλιοκεντρική θεωρία.   
  Η γή δεν ήταν ακίνητη για τον Αρίσταρχο. Δεν περιστρεφόταν όμως μόνο γύρω από τον εαυτό της, αλλά και γύρω από τον ήλιο. Ωστόσο οι ορθές κατά τα άλλα ιδέες του Αριστάρχου, δεν έγιναν αποδεκτές από την πλειοψηφία των αστρονόμων της εποχής, οι οποίοι δεν ήταν έτοιμοι για κάτι τέτοιο και παρέμειναν πιστοί στον Αριστοτέλη.
   Ωστόσο, από την Αλεξάνδρεια ήταν που αναδύθηκε σχολή συστηματικών παρατηρητών (του ουρανού) η οποία καθόρισε τις θέσεις αστέρων και πλανητών με βαθμονομημένα όργανα ενώ παράλληλα ανέπτυξε μαθηματικές μεθόδους. Η αστρονομία είχε ανελιχθεί σε επιστήμη. Παρατηρησιακά δεδομένα από την Αλεξάνδρεια 150 χρόνια πριν τον Ίππαρχο, προστέθηκαν στις δικές του και τις παλαιότερες περί εκλείψεων από τους Βαβυλώνιους, συνιστώντας πρώιμο γενεσιουργό αμάλγαμα μαθηματικής αστρονομίας.
   Η απόσταση του ήλιου προς τα γειτονικά του άστρα, δεν ήταν δυνατόν να μετρηθεί και να αποτυπωθεί με ακρίβεια σε ουράνια σφαίρα, εξαιτίας του εκτυφλωτικού φωτός του. Κατά συνέπεια, για να υπολογισθεί η απόκλιση θα μπορούσε κάποιος να μετρήσει το μήκος της σκιάς που παράγει μια ράβδος το μεσημέρι ώστε να λάβει το ύψος του ήλιου από τον ορίζοντα και κατ’ επέκταση την απόσταση του από τον ισημερινό.
Ορθή Αναφορά
  Η Ορθή Αναφορά είναι το ανάλογο του γεωγραφικού μήκους στην Ουράνια Σφαίρα. Είναι η γωνιώδης απόσταση γΜ, της τομής του ωριαίου του αστέρα S με τον ισημερινό, από το Εαρινό Σημείο γ. Μετριέται σε ώρες λεπτά και δευτερόλεπτα, όπου μια ώρα αντιστοιχεί σε τόξο 15 μοιρών. Οι τιμές του κυμαίνονται από 0 έως 24 ώρες. [astronomia.gr]
  Για την ορθή αναφορά θα μπορούσε κάποιος να καταγράψει τον χρόνο που μεσολαβούσε για το πέρασμα του ήλιου από κάποια ορισμένη θέση στον ουρανό (τον μεσημβρινό για παράδειγμα) και αυτόν ενός αστέρα της ίδιας γειτονιάς, με την ακρίβεια όμως, που παρείχαν τα ρολόγια νερού. Επιπροσθέτως, θα μπορούσε κάποιος να χρησιμοποιήσει την σελήνη ως σύνδεσμο: θέση σε σχέση με τα άστρα την νύχτα και σε σχέση με τον ήλιο την ημέρα. Αλλά τι θα γινόταν με την γρήγορη κίνηση της σελήνης ανάμεσα στις δύο παρατηρήσεις;  Για να αντιπαρέλθει τις δυσκολίες ο Ίππαρχος στην πραγματικότητα, έκανε χρήση πινάκων εκκεντρότητας, όπου στο προκείμενο το κέντρο της ελλειπτικής σεληνιακής τροχιάς δεν συμπίπτει με αυτό της γής
  Η νοητή γραμμή ανάμεσα στο περίγειο (perigee -το σημείο στο οποίο ένα σώμα π.χ. η σελήνη, βρίσκεται στη μικρότερη απόσταση από τη γη γύρω από την οποία περιφέρεται. Παρεμφερής είναι η έννοια του περιηλίου μόνο που στη θέση της γης βρίσκεται ο Ήλιος) και το απόγειο (apogee-σημείο στο οποίο η σελήνη βρίσκεται στην μεγαλύτερη απόσταση από τη γή) ή αλλιώς γραμμή των αψίδων [astronomia.gr]
Η νοητή γραμμή ανάμεσα στο περίγειο (perigee -το σημείο στο οποίο ένα σώμα π.χ. η σελήνη, βρίσκεται στη μικρότερη απόσταση από τη γη γύρω από την οποία περιφέρεται. Παρεμφερής είναι η έννοια του περιηλίου μόνο που στη θέση της γης βρίσκεται ο Ήλιος) και το απόγειο (apogee-σημείο στο οποίο η σελήνη βρίσκεται στην μεγαλύτερη απόσταση από τη γή) ή αλλιώς γραμμή των αψίδων [astronomia.gr]
Καθόρισε τη θέση της γραμμής των αψίδων και της εκκεντρότητας επειδή γνώριζε πολύ καλά τη διάρκεια των εποχών (94,5 ημέρες για την Άνοιξη – 92,5 ημέρες για το καλοκαίρι – 178,25 ημέρες για φθινόπωρο και χειμώνα) γεγονός που του επέτρεψε να αναπαραστήσει την φαινόμενη κίνηση του ήλιου με απόκλιση μόλις ενός λεπτού του τόξου, κάτι που θα γινόταν αντιληπτό μετά από 1.700 χρόνια. Η ακρίβεια των ηλιακών του παρατηρήσεων, ήταν τέτοια που επέτρεψε στον Σωσιγένη τον Αλεξανδρινό να μεταρρυθμίσει  το  υφιστάμενο ημερολόγιο στο νέο Ιουλιανό (εφαρμόζοντας το δίσεκτο έτος) 100 χρόνια αργότερα στην Αλεξάνδρεια.
Διάρκεια των εποχών
Σε ότι αφορά στη Σελήνη ο Ίππαρχος προσδιόρισε τους τέσσερις μήνες (συνοδικό, αστρικό, δρακονικό και ανωμαλιακό) την κλίση της τροχιάς της σε σχέση με την εκλειπτική, σε 5° και την ανάδρομη κίνηση των κόμβων (σημείων συνάντησης με την εκλειπτική) κάθε 18,67 χρόνια.
Ο Θαλής (624-546 π.Χ.) κατά την παραμονή του στην Αίγυπτο, φέρεται να έχει επινοήσει μέθοδο εμμέσου προσδιορισμού ύψους πυραμίδας, με ταυτόχρονη μέτρηση της σκιάς του ήλιου και κατακόρυφου γνώμονα γνωστού ύψους (Plinius, Naturalis Historiae XXXVI, 82 – Πλούταρχος, Επτά σοφών συμπόσιον 147Α – Διογένης Λαέρτιος, Βίοι φιλοσόφων Α. 27 ) ενώ από την πατρίδα του τηνΜίλητο, φαίνεται να μπορεί να υπολογίζει την απόσταση από την ξηρά, ενός πλοίου που ταξίδευε ανοικτά στη θάλασσα. (Πρόκλου Διαδόχου, Σχόλια εις το Α’ βιβλίο των Στοιχείων του Ευκλείδη ) Του αποδίδονται δε ιστορικά, γνώσεις μαθηματικών και γεωμετρίας όπως, μεταξύ άλλων, ότι: “η διάμετρος διαιρεί τον κύκλο σε δύο ίσα μέρη, οι παρά τη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες, δύο κατα κορυφή γωνίες είναι ίσες και όταν δύο τρίγωνα έχουν αντιστοίχως ίσες μια πλευρά και τις δυο προσκείμενες γωνίες τότε είναι ίσα”. (Πρόκλου Διαδόχου, Σχόλια εις το Α’ βιβλίο των Στοιχείων του Ευκλείδη ) Για τον μαθητή του, Αναξίμανδρο (610-546 π.Χ.) υπάρχουν ιστορικές μαρτυρίες, ότι χρησιμοποίησε πρώτος το γνώμονα στην Ελλάδα και ότι με τη βοήθεια του προσδιόρισε τα ηλιοστάσια, θερινό και χειμερινό, τις ισημερίες, εαρινή και φθινοπωρινή και τις τέσσερις εποχές. (Διογένης Λαέρτιος – Βίοι Φιλοσόφων Β’ κεφ.α’ – παρ. 1/2 — Ευσέβιος ο Παμφίλου – Ευαγγελική Προπαρασκευή Χ- 14.11 — Λεξικό Σούδα – Αναξίμανδρος )
σσεται ἠὼς δείλη μέσον μαρ –Ομήρου Ιλιάδα Φ. 111
Την εποχή του Ομήρου, το ημερονύκτιο είχε 6 υποδιαιρέσεις (μοίρες)ηώς, μέσον ήμαρ, δείλη για την ημέρα και εσπέρας, μέση νύκτα, αμφιλύκη, για τη νύχτα, αργότερα δε εξαιτίας της μεταβλητής διάρκειας των εποχών, χωρίστηκε σε 12 άνισης διάρκειας ημερήσιες ώρες και 12 νυχτερινές. Το δωδέκατο του χρονικού διαστήματος που μεσολαβούσε από την ανατολή μέχρι τη δύση του ηλίου, ονομάστηκε ημερήσια ώρα και αποτέλεσε μονάδα μέτρησης χρόνου. Αντίστοιχα το δωδέκατο από τη δύση μέχρι την ανατολή του, ονομάστηκε νυκτερινή ώρα. Αυτές οι μονάδες συνόδευσαν την επινόηση και κατασκευή των πρώτων αστρονομικών οργάνων από τους Έλληνες αστρονόμους, όπως το ηλιακό ρολόι και η κλεψύδρα.
Αργότερα, σε αναζήτηση μεγαλύτερης ακρίβειας, προσδιορίστηκαν μεθοδικά οι ουρανογραφικές, ισημερινές, οριζόντιες ή εκλειπτικές συντεταγμένες κάποιων αστέρων με μαθηματικά εργαλεία (απόρροια της πολυετούς και επιστημονικής πλέον προσπάθειας) που είχαν συνεπακόλουθα αναπτυχθεί και έμελλε να θεμελιώσουν τόσο την επιστήμη της αστρονομίας όσο και την τριγωνομετρία, επίπεδη και σφαιρική. Η συστηματική καταγραφή των ουράνιων αντικειμένων και κατόπιν οι επίπεδες ή τρισδιάστατες απεικονίσεις τους έγιναν αντικείμενο σπουδής το οποίο οι αρχαίοι Έλληνες αστρονόμοι δίδασκαν και αποτύπωναν στα έργα τους.
Κίνηση του ήλιου
Κίνηση του ήλιου σύμφωνα με την θεωρία για τους επικύκλους του Ιππάρχου αναθεωρημένη από τον Πτολεμαίο. Η γη (Τ) είναι το κέντρο του φέροντος κύ-κλου (Ρ) είναι το κέντρο του επικύκλου του ήλιου (S). Το αποτέλεσμα φαίνεται με κόκκινο χρώμα.-wikimedia commons
Μεταξύ άλλων και πέραν του Θαλή και του Αναξίμανδρου που προαναφέρθηκαν, ο Αρίσταρχος, ο Εύδοξος, ο Απολλώνιος, ο Ίππαρχος, ο Ήρων και ο Κλαύδιος Πτολεμαίος, επινόησαν και κατασκεύασαν κάποιου είδους όργανο παρατήρησης του ουράνιου θόλου, κοινός στόχος των οποίων, ήταν η λήψη του ύψους των αστέρων από τον ορίζοντα στον ουράνιο θόλο, κάτι για το οποίο μας προϊδεάζει ετυμολογικά τουλάχιστον, η λέξη αστρολάβος. Η ιστορία της εξελικτικής πορείας του, φαίνεται να αναδύεται από την κλασσική Ελλάδα και τον Απολλώνιο τον Περγαίο, σπουδαίο μαθηματικό, γεωμέτρη και αστρονόμο, ο οποίος έζησε περί το 225 π.Χ. στην Πέργη της Μ. Ασίας και την Αλεξάνδρεια της Αιγύπτου. Ο μεγάλος κωδικοποιητής των τομών του κώνου (παραβολή, έλλειψη, υπερβολή) εφευρέτης και κατασκευαστής του πρώτου ηλιακού ρολογιού, είχε μελετήσει επαρκώς την προβολή του σκιοθηρικού γνώμονα, την οποία βελτίωσε η πλέον σημαίνουσα προσωπικότητα στην ιστορία της θεωρίας του, ο Ίππαρχος ο οποίος επηρέασε την ανάπτυξη της τριγωνομετρίας, επαναπροσδιόρισε και τυποποίησε δε την προβολή, ως μέθοδο επίλυσης πολύπλοκων αστρονομικών προβλημάτων δίχως σφαιρική τριγωνομετρία, πιθανόν όμως έχοντας αποδείξει τα κύρια χαρακτηριστικά της. Ο Ίππαρχος συντέλεσε στην κατασκευή οργάνων που υπάγονται συνολικά στην κατηγορία του αστρολάβου και πολύ πιθανόν να διέθετε και ο ίδιος κάποια μορφή του, αλλά ωστόσο θεωρείται βέβαιο ότι θεμελίωσε την σημερινή προβολική γεωμετρία. Κατέδειξε πρώτος ότι η στερεογραφική (επίπεδη) προβολή είναι σύμμορφη και ότι μεταμορφώνει κύκλους της σφαίρας οι οποίοι δεν διασχίζουν το κέντρο της προβολής, σε επίπεδους κύκλους. Αυτή ήταν η βάση για συσκευές που αποκαλούμε αστρολάβους [επεξηγήσεις περί χαρτογραφικών προβολών από τον κ. Εμμ. Στεφανάκη, Πανεπιστήμιο Πειραιά – Το σχήμα της γης, Συστήματα αναφοράς].
Τα πρώτα στοιχεία για την χρήση στερεογραφικής προβολής σε συσκευή, βρίσκονται σε γραπτά του Ρωμαίου συγγραφέα και αρχιτέκτονα Μάρκου Βιτρούβιου Πολλίωνος (περίπου 88 – 26 π.Χ), ο οποίος στο έργο του De architectura (Περί αρχιτεκτονικής) περιγράφει ένα αναφορικό ρολόι (πιθανόν κλεψύδρα η ρολόι νερού) στην Αλεξάνδρεια. Το ρολόι είχε ένα περιστρεφόμενο δίσκο που έφερε πάνω του σημειωμένους τους αστέρες πίσω από μια στεφάνη που υποδείκνυε περιμετρικά τις ώρες της ημέρας και έφερε στερεωμένες πάνω της συρμάτινες διαδρομές που αναπαριστούσαν αυτές του ήλιου και της σελήνης καθώς επίσης ορίζοντα και μεσημβρινό. Με την χρήση στερεογραφικής προβολής ρυθμίζονταν οι αστροθεσίες από τον συνδυασμό των δύο δίσκων. Παρόμοιες κατασκευές χρονολογούνται από τον πρώτο έως τον τρίτο αιώνα και έχουν βρεθεί στο Σάλτσμπουργκ και την βορειοανατολική Γαλλία προφανώς δε, αρκετά διαδεδομένες στους Ρωμαίους.
Από τους διάσημους συγγραφείς, στην στερεογραφική απεικόνιση ή αλλιώς επιπεδόσφαιρο, αναφέρθηκε εκτενώς ο Κλαύδιος Πτολεμαίος(περί το 150 μ.Χ) στο έργο του γνωστό ως Πλανησφαίριον (Planisphaerium). Οι συμβουλές του, μας προκαλούν να υποθέσουμε ότι θα πρέπει να είχε στην κατοχή του κάποιο όργανο που θα μπορούσε να αποκαλεσθεί αστρολάβος. Ο Πτολεμαίος τελειοποίησε επίσης την θεμελιώδη γεωμετρία του συστήματος γη-ήλιος που χρησιμοποιήθηκε στον σχεδιασμό τέτοιων συσκευών.
Ωστόσο, κανείς δεν γνωρίζει πότε ακριβώς η στερεογραφική προβολή μετετράπη στην πραγματικότητα στο όργανο που γνωρίζουμε σήμερα με την ονομασία αστρολάβος. Ο Θέων της Αλεξανδρείας έγραψε πραγματεία για τον αστρολάβο, η οποία αποτέλεσε τη βάση για τα περισσότερα συναφή γραπτά του Μεσαίωνα, ενώ υπάρχουν βάσιμες υποψίες ότι ο Συνέσιος της Κυρήνης (περίπου 378-430 π.Χ) είχε κατασκευάσει κάποια μορφή αστρολάβου. Αυτό τεκμαίρεται από το ότι ήταν μαθητής της Υπατίας, κόρης του Θέωνα. Οι πλέον πρώιμες περιγραφές πραγματικών οργάνων μας παρέχονται τον έκτο αιώνα από τον Ιωάννη τον Φιλόπονο της Αλεξανδρείας, αλλιώς γνωστός ωςΙωάννης ο Γραμματικός και έναν αιώνα αργότερα από τον επίσκοπο Σεβήρο Σεμπούχτ.
Το κύριο θραύσμα του μηχανισμού. Αθήνα, Εθνικό Αρχαιολογικό Μουσείο
Μαθηματικά ίχνη του Ιππάρχου βρίσκουμε στον Μηχανισμό των Αντικυθήρων, όπως συνηθίζουμε στις μέρες μας ν’ αναφερόμαστε στον αστρονομικό υπολογιστή του 2ου αιώνα π.Χ. Ο μηχανισμός βασίζεται στο ηλιακό έτος, τον Κύκλο του Μέτωνος, αλλιώς γνωστό με την αρχαία ελληνική ονομασία ννεακαιδεκαετηρίς, ο οποίος είναι η περίοδος που η Σελήνη επανεμφανίζεται στο ίδιο άστρο του ουρανού, ευρισκόμενη στην ίδια φάση (η πανσέληνος εμφανίζεται στην ίδια θέση στον ουρανό σε περίπου 19 χρόνια) τον Κύκλο του Καλλίππου (ο οποίος συνίσταται από τέσσερις Κύκλους του Μέτωνος και είναι πιο ακριβής) τον Κύκλο του Σάρου και τους Κύκλους των Εξελιγμών (τρείς Κύκλοι Σάρου για ακριβείς προβλέψεις εκλείψεων.
Η μελέτη του Μηχανισμού των Αντικυθήρων αποδεικνύει ότι η συλλογική προσπάθεια πολλών από τους ερευνητές του χρονικού πλαισίου που περιλαμβάνει αυτή η αναδομή, δικαίως υπαινίσσεται μηχανιστική υλοποίηση της θεωρίας του Ιππάρχου η οποία εξηγούσε τις περιοδικές ανωμαλίες στην κίνηση της Σελήνης με βάση την ελλειπτική τροχιά της. Το γεγονός ότι ο Ίππαρχος έζησε τα τελευταία χρόνια της ζωής του στη Ρόδο, η οποία φημιζόταν για την τεχνολογική υπεροχή της, ενισχύει την άποψη ότι εκεί, ο Ίππαρχος (ή κάποιος άλλος υπό την καθοδήγησή του) μπόρεσε να δημιουργήσει ένα μηχάνημα εξαιρετικής πολυπλοκότητας.
Από τις ενδείξεις εδραιώνεται επίσης η εικασία, ότι ο Ίππαρχος κατείχε τις αστρονομικές γνώσεις των Βαβυλωνίων, αφού αυτές απετέλεσαν τη βάση για τη δημιουργία του Μηχανισμού. Το ισχυρό ιερατείο των Βαβυλωνίων κρατούσε τα αρχεία των πλανητικών μετακινήσεων για αιώνες και η δυνατότητα πρόβλεψης φαινομένων όπως οι εκλείψεις (οι οποίες εθεωρούντο οιωνοί) ενίσχυε τη θέση του Ιππάρχου.  Ποιές ήταν όμως οι ενδείξεις αυτές;
Η ανάγνωση από τους Γιάννη Μπιτσάκη και Αγαμέμνονα Τσελίκατης πρότασης «…η σπείρα έχει 235 υποδιαιρέσεις» σε μία από τις εικόνες θραυσμάτων που είχαν ληφθεί κατά τη συλλογή στοιχείων, υπήρξε εξαιρετικά διαφωτιστική: κατέδειξε αφενός ότι τα καντράν δεν έφεραν ομόκεντρους κύκλους, αλλά σπείρες και αφετέρου ότι το πάνω καντράν στην οπίσθια όψη του Μηχανισμού (στο οποίο αναφερόταν η πρόταση) σχετιζόταν με τον Μετωνικό κύκλο των Βαβυλωνίων. Ο Μετωνικός κύκλος προκύπτει από τη στενή ισοτιμία 19 ετών με 235 σεληνιακούς μήνες (ένας σεληνιακός ή συνοδικός μήνας είναι το διάστημα μεταξύ δύο ομοίων φάσεων της Σελήνης, π.χ. από Πανσέληνο σε Πανσέληνο). Ο κύκλος αυτός αντιπροσωπεύει την επιστροφή της Σελήνης στην ίδια φάση και στην ίδια ημερομηνία του έτους. Με το κλείσιμο του κύκλου, ο Ήλιος, η Σελήνη και η Γη επιστρέφουν στους ίδιους περίπου σχετικούς προσανατολισμούς.
Σπειροειδές αποδείχθηκε και το καντράν στο κάτω μέρος της πίσω πλευράς του Μηχανισμού, το οποίο φέρει 223 υποδιαιρέσεις στη σπείρα των τεσσάρων στροφών. Τόσο ο αριθμός των υποδιαιρέσεων όσο και η ανάγνωση των συμβόλων (“Σ” για τη Σελήνη και “Η” για τον Ήλιο) που εντοπίστηκαν μεταξύ αυτών καταδεικνύουν ότι αυτό αποτελεί αναπαράσταση του Κύκλου του Σάρου, ο οποίος προβλέπει εκλείψεις: αν μια ηλιακή ή σεληνιακή έκλειψη συμβεί σήμερα, μια παρόμοια θα συμβεί έπειτα από 223 σεληνιακούς μήνες. Έτσι από τις παρελθούσες εκλείψεις μπορούν να προβλεφθούν οι επόμενες. Αξίζει να σημειωθεί ότι επειδή ο αριθμός των ημερών στον κύκλο του Σάρου δεν είναι ακέραιος, οι σεληνιακές εκλείψεις είναι μετατοπισμένες κατά οκτώ ώρες και οι ηλιακές (οι οποίες γίνονται ορατές από συγκεκριμένα γεωγραφικά πλάτη) μετατοπίζονται κατά 120 μοίρες. Ακριβείς επαναλήψεις σεληνιακών εκλείψεων λαμβάνουν χώρα έπειτα από τρεις κύκλους του Σάρου (όταν οι οκτάωρες μετατοπίσεις συμπληρώσουν ένα 24ωρο), πράγμα το οποίο περιγράφεται από τονΚύκλο του Εξελιγμού, διάρκειας 54 ετών.
         Ο Κύκλος του Σάρου
Ο Κύκλος του Εξελιγμού αντιπροσωπεύεται από ένα μικρότερο καντράν στο εσωτερικό του κάτω μεγάλου καντράν της οπίσθιας όψης. Αλλά και το πάνω μεγάλο καντράν της ίδιας όψης φέρει ένα μικρότερο στο εσωτερικό του: αυτό αντιπροσωπεύει τον Κύκλο του Καλλίππου, ο οποίος διαρκεί 76 χρόνια και είναι τέσσερις Κύκλοι του Μέτωνος μείον μία ημέρα. (Ετσι αυξάνεται η ακρίβεια με την οποία αντιστοιχίζονται ένα ηλιακό έτος με πλήρεις σεληνιακούς μήνες). Όσο για το καντράν της πρόσθιας όψης, αυτό εκτός από το κλασικό ημερολόγιο των 365 ημερών (με δυνατότητα ρύθμισης για δίσεκτα έτη) έδειχνε πιθανότατα τις σχετικές θέσεις των πλανητών (προς το παρόν έχουν εντοπισθεί μόνο ο Ήλιος, η Σελήνη και η Αφροδίτη).
Κύκλος του Εξελιγμού
  Οι επεξηγήσεις των μερών του μηχανισμού των Αντικυθήρων αντλήθηκαν από ομώνυμο άρθρο δημοσιευμένο στον ιστότοπο του Συλλόγου Φίλων Αστρονομίας Κρήτης ΣΦΑΚ
Οι ουράνιες κινήσεις χάρισαν στον αρχαίο κόσμο την δυνατότητα επίτευξης μετρήσεων ιδιαίτερα υψηλής ακρίβειας με σχετικά λιγοστά μέσα. Και αυτό μπορεί εύκολα να διαπιστωθεί με απλή σύγκριση των τιμών τους με τις σύγχρονες. Ο εμπνευστής του Σεληνιακού Μηχανισμού, μέρος αυτού των Αντικυθήρων, μέσω τεσσάρων γραναζιών, μιας ακίδας και κατάλληλων αυλακώσεων κατάφερε να προσομοιάσει την μεταβαλλόμενη ταχύτητα του φεγγαριού πλησιάζοντας σημαντικά τον δεύτερο νόμο του Κέπλερ, υπολογίζοντας την γρηγορότερη κίνηση του στο περίγειο και την αργότερη στο απόγειο.
Το 2006, ανακοινώθηκε από την Ομάδα Έρευνας του Μηχανισμού των Αντικυθήρων ότι ένα σύμπλεγμα οδοντωτών τροχών στο εσωτερικό του μηχανισμού αναπαριστούσε τη μεταβλητή γωνιακή ταχύτητα της Σελήνης, σύμφωνα με τη θεωρία του Ιππάρχου. Η σχετικά κοντινή χρονική απόσταση ανάμεσα στον θάνατο του Ιππάρχου και την υποτιθέμενη περίοδο κατασκευής του μηχανισμού θα μπορούσε να σημαίνει ότι η σχολή του Ιππάρχου είχε κάποια ανάμειξη στον σχεδιασμό ή και την κατασκευή του μοναδικού αυτού οργάνου.[Διονύσης Π. Σιμόπουλος, Αστρονομία: Εν αρχή ην ο Ίππαρχος, Γεωτρόπιο, Ελευθεροτυπία, 24 Ιουνίου 2000]
Άτλας των Φαρνέζε Αρχαιολογικό εύρημα από το ανάκτορο των Φαρνέζε.
Ο Άτλας κρατά στους ώμους του τον ουρανό, γλυπτό του 3ου αι. π.Χ. (ή νωρίτερα) Εκτίθεται στο Εθνικό Αρχαιολογικό Μουσείο της Νάπολι. Το ύψος του Άτλαντα είναι 1,86μ. και η διάμετρος της σφαίρας 65 εκ.
Στην αρχή αυτής της αναδρομής είχε επισημανθεί η ασάφεια με την οποία ο Πτολεμαίος αναφερόταν στην χρήση του γνωσιακού καταπιστεύματος του Ίππάρχου και η σημαντικότατη αυτή ανακάλυψη ανέσυρε από τον βυθό των Αντικυθήρων πέρα από τον μηχανισμό, απόδειξη (την εγγύτητα στο νόμο του Κέπλερ) ότι η ευρύτητα των μαθηματικών γνώσεων του Ιππάρχου ξεπερνούσε κατά πολύ την αναδυόμενη από το έργο του Πτολεμαίου.
Τον Μάιο του 2005, μελέτη του Bradley Schaefer από τοπανεπιστήμιο της Λουιζιάνα (Louisiana State University) κατέδειξε ότι οι αστερισμοί που απεικονίζονται στον ουρανό με την μορφή σφαίρας που σηκώνει ο Άτλας των Φαρνέζε προέρχονται από τον αυθεντικό αστρικό κατάλογο του Ιππάρχου. Με ακριβείς μετρήσεις οSchaefer προσδιόρισε την ημερομηνία των αστροθεσιών στο 125 π.Χ., ημερομηνία κατά την οποία θα μπορούσε ο Ίππαρχος να είναι ο παρατηρητής. Υποστηρικτικά της πρότασης αυτής παρέχεται λεπτομερής συγκριτική αναφορά των αστρικών θέσεων στην ουράνια σφαίρα του Άτλαντα, με αυτές από το μοναδικό διασωθέν έργο του Ιππάρχου. Ο Schaefer υποστηρίζει ότι ο Άτλας των Φαρνέζε συνιστάνέα πηγή για το έργο του Ιππάρχου τόσο για την αποσαφήνιση των αστρονομικών μεθόδων του όσο και για την αναζήτηση του πρωτοτύπου (καταλόγου) στην Αλμαγέστη. [The Epoch of the constellations on the Farnese Atlas and their origin in Hipparchus’s lost catalogue, διαθέσιμη διαδικτυακά στην διεύθυνση http://articles.adsabs.harvard.edu  ].
Σε κάθε περίπτωση το έργο του Ιππάρχου αποτέλεσε διαρκές κληροδότημα το οποίο πολύ αργότερα από την εποχή του εκσυγχρονίστηκε από τον Al Sufi [Πέρσης αστρονόμος το πλήρες όνομα του οποίου είναι bd al-Ramān al-ūfī (903–986), επίσης γνωστός με την λατινική ονομασία Azophi. Ο Al-ūfī ήταν ο διάδοχος του Πτολεμαίου από τον αραβικό κόσμο την εποχή που η ελληνική αστρονομική παράδοση έσβηνε στην δύση αλλά ανακαλυπτόταν εκ νέου στην Μέση Ανατολή] και τον Νικόλαο Κοπέρνικο [(1473 – 1543) μαθηματικός και αστρονόμος της αναγέννησης, ο οποίος διατύπωσε το ηλιοκεντρικό μοντέλο του σύμπαντος, τοποθετώντας τον Ήλιο και όχι τη Γη στο κέντρο του].
Ο αυθεντικός χαμένος κατάλογός του ξεπεράστηκε μόνο από πλέον σύγχρονες παρατηρήσεις επακόλουθο την εφεύρεσης του τηλεσκοπίου, η δε κλίμακα φαινόμενης λαμπρότητος με την οποία πρώτος είχε κατηγοριοποιήσει ταστέρια σε έξι μεγέθη, χρησιμοποιείται ακόμη και σήμερα, όπως είναι φυσικό αρκετά πιο εκλεπτυσμένη.
Αραβική απεικόνιση του Ωρίωνα, όπως φαίνεται από τη γη (αριστερά) και εναντιόμορφη εικόνα (δεξιά) από αντίγραφο του 13ου αι. από την Βίβλο των Απλανών Αστέρων του al-ūfī. © Bibliothéque National de France
Αραβική απεικόνιση του Ωρίωνα, όπως φαίνεται από τη γη (αριστερά) και εναντιόμορφη εικόνα (δεξιά) από αντίγραφο του 13ου αι. από την Βίβλο των Απλανών Αστέρων του al-ūfī. © Bibliothéque National de France
Το έργο του, το οποίο εκμαιεύθηκε από έργα μεταγενεστέρων του και η πλειονότητα μεθόδων και αποτελεσμάτων του που ανακατασκευάστηκαν από τους ιστορικούς οι οποίοι συνδύασαν αποσπασματικές αναφορές που διεσώθηκαν στα έργα άλλων (όπως οι:Πλίνιος, Στράβων, Θέων ο  Σμυρναίος, Πλούταρχος, Πάππος της Αλεξανδρείας, Θέων ο Αλεξανδρεύς και Κλαύδιος Πτολεμαίος)  κατέδειξαν ότι ο Ίππαρχος οδήγησε την μετάβαση της αστρονομίας από τα θεωρητικά στα επιστημονικά, παραγωγικά μονοπάτια, θεμελίωσε την τριγωνομετρία και βελτίωσε τα μαθηματικά εργαλεία της εποχής, γεγονότα που έχουν αξία σχετική με την ανάπτυξη αυτών των επιστημών την σύγχρονη εποχή. Τότε, τα μέσα του Ιππάρχου ήταν δικές του επινοήσεις ή βελτιώσεις σε υφιστάμενα όργανα, όπως για παράδειγμα ο αστρολάβος, η διόπτρα, ο γνώμονας, η κλεψύδρα, το καθέτιον, τον πόλο, το σκιάθηρο, τη στερεά σφαίρα, τον τροπικό κρίκο, την υδράρπαγα, το υδρολόγιο κ.α.
Δορυφόρος Ιππάρχου
Το όραμα του Ιππάρχου, κοντά δύο χιλιετίες πριν, ανέλαβε να ολοκληρώσει ο ομώνυμος δορυφόρος (εικόνα) που εκτόξευσε η Ευρωπαϊκή Υπηρεσία Διαστήματος τον Αύγουστο του 1989 και μέχρι την ολοκλήρωση της αστρομετρικής αποστολής του τον Μάρτιο του 1993, είχε καταγράψει αστροθεσίες στην ουράνια σφαίρα για 118.218 άστρα με την υψηλότερη δυνατή ακρίβεια και πάνω από ένα εκατομμύριο με λιγότερη αλλά και πάλι χωρίς προηγούμενο.
Τύχο Μπράχε
Με την ολοκλήρωση του καταλόγου Tycho 2 [όνομα αφιερωμένο στον Δανό αστρονόμο Τύχο Μπράχε (1546-1601) ο οποίος βελτίωσε τις θεωρίες περί Σελήνης, μελέτησε τη διάθλαση του φωτός, συνέταξε δε κατάλογο αστέρων. Μαθητής του υπήρξε ο Γερμανός αστρονόμοςΓιοχάνες Κέπλερ (1571-1630) ο οποίος διατύπωσε τους πασίγνωστους νόμους της ουράνιας μηχανικής] το έτος 2.000, ο αριθμός των αστέρων που καταγράφησαν ανήλθε στο σύνολο των 2,539,913 μονάδων, σε ποσοστό 99% όλων των αστέρων (του ορατού σύμπαντος) με δείκτη λαμπρότητος έως και 11, που σημαίνει περίπου 100.000 φορές ασθενέστερα του λαμπρότερου Σείριου.
Πλανησφαίριο
Το πλανησφαίριο του Ιππάρχου, απεικονίζει την ουράνια σφαίρα όπως αστρομετρικά ειδώθηκε για πρώτη φορά σαν σύνολο από τον ομώνυμο δορυφόρο. Είναι προβολή του νυκτερινού ουρανού πάνω σε εικοσάεδρο που τονίζει ειδικά τα λαμπρά άστρα και αστερισμούς. Τυπωμένο σε δύο φύλλα μεγέθους Α4 (210*297χιλ) η σφαίρα συναρμόζεται σε σχηματισμό τρισδιάστατου χάρτη που χωρά στην παλάμη μας.
Apollo 16, AS-0839:
Πλάγια εικόνα του αρχαίου σεληνιακού κρατήρα διαμέτρου 138 χλμ., αφιερωμένου στον Ίππαρχο. Ο κρατήρας επικεντρώνεται πλησίον του μέσου της εικόνας και εκτείνεται για πάνω από το μισό πλάτος της φωτογραφίας, αλλά είναι μόλις ορατός εξαιτίας των τροποποιήσεων που έχει επιφέρει η πάροδος των ετών. Μεγάλο μέρος των αλλαγών αυτών οφείλεται σε ύστερες συγκρούσεις και επίσης στις ακτινικές ρυτιδώσεις από την Ίμβριο σύγκρουση (κατά την οποία δημιουργήθηκε η θάλασσα των βροχών και καθόρισε της γεωλογικές εποχές της σε πρώιμη ίμβριο και ύστερη ίμβριο) φαινόμενο γνωστό ως ίμβρια γλυπτική.
Βιβλιογραφία
  Ιππάρχου Των Αράτου και Ευδόξου Φαινομένων ΕξηγήσεωςΕυάγγελος Σπανδάγος-Αίθρα 2002
  Hipparchus (Βιογραφία) School of Mathematics and Statistics University of St Andrews, Scotland
         Founders of Modern Astronomy From Hipparchus to Hawking
         From Sundials to Atomic Clocks J.Jespersen & J. Fitz-Randolph
– Tycho, Longomontanus and Kepler on Ptolemy’s Solar Observations and Theory, Precession of the Equinoxes and Obliquity of the Ecliptic – N.M. Swerdlow
    Milankovitch cycles: Precession discovered and explained from Hipparchus to Newton
Bachelor thesis by Marjolein Piek
    Planispheric Astrolabes from the National Museum of American History
         From Stargazers to Starships David P. Stern
         A History of Astronomy From Thales to Kepler – J.L.E. Dreyer
Διαδικτυακές πηγές
        HIPPARCHUS AND THE PRECESSION OF THE EQUINOXESJosée SERT «EAAE Summerschools» Working Group CLEA, France
        Sidereal Astrology The Tropical and Sidereal Zodiaks & The Cycle of Earth’s Precessional Cross by Nick Anthony Fiorenza
   Studies of Occidental Constellations and Star Names to the Classical Period
Gary D.Thompson
         Star Tales Ian Ridpath
         The Constellations World Digital Library

         Project Gutenberg (αστρονομικοί όροι και επεξηγήσεις)
         ESA The Hipparcos Space Astrometry Mission
         Perseus Digital Library
         Encyclopaedia Britannica
         carnaval.com
         wikipedia
      Πλανητικά Συστήματα Κλεομένης Γ. Τσιγάνης Επικουρος καθηγητής ΑΠΘ – Πρόχειρες διδακτικές σημειώσεις για το ομώνυμο μάθημα επιλογής του Τμ. Φυσικής ΑΠΘ – Ακ. Έτος: 2012-13
       Πρακτικά 14ου Πανελλήνιου Συνεδρίου Ένωσης Ελλήνων Φυσικών, 29/3 – 1/4 2012, σσ. 317-327
    Αρχαίοι Έλληνες αστρονόμοι και όργανα μέτρησης του χρόνουΠάνου Ευαγγελία Φυσικός M. Sc., Υποψήφια Διδάκτωρ της Ιστορίας και της Φιλοσοφίας των Φυσικών Επιστημών, Τμήμα Φυσικής Πανεπιστημίου Αθηνών, Αθήνα
     Αστρονομικές αναζητήσεις και αστρονομικά δεδομένα από τους αρχαίους πολιτισμούς μέχρι τη σύγχρονη εποχή Θεόδωρος Γ. Εξαρχάκος Καθηγητής του Πανεπιστημίου Αθηνών
      The Measurement Method of the Almagest  Dennis Duke, Florida State University
   The Adaptation of Babylonian Methods in Greek Numerical Astronomy
Alexander Jones – Isis, Vol.82, No 3, Sep., 1991, pp.440-453
Ίππαρχος ο Νικαεύς (ή Ρόδιος)……….η απαρχή της Μαθηματικής Αστρονομίας
Πηγή : https://theancientwebgreece.wordpress.com/2015/07/13/%ce%af%cf%80%cf%80%ce%b1%cf%81%cf%87%ce%bf%cf%82-%ce%bf-%ce%bd%ce%b9%ce%ba%ce%b1%ce%b5%cf%8d%cf%82-%ce%ae-%cf%81%cf%8c%ce%b4%ce%b9%ce%bf%cf%82-%ce%b7-%ce%b1%cf%80%ce%b1/ https://theancientwebgreece.wordpress.com/2015/07/13/%ce%af%cf%80%cf%80%ce%b1%cf%81%cf%87%ce%bf%cf%82-%ce%bf-%ce%bd%ce%b9%ce%ba%ce%b1%ce%b5%cf%8d%cf%82-%ce%ae-%cf%81%cf%8c%ce%b4%ce%b9%ce%bf%cf%82-%ce%b7-%ce%b1%cf%80%ce%b1/
http://pirforosellin.blogspot.gr/  - Επιτρέπεται η αναδημοσίευση του περιεχομένου της ιστοσελίδας εφόσον αναφέρεται ευκρινώς η πηγή του και υπάρχει ενεργός σύνδεσμος(link ). Νόμος 2121/1993 και κανόνες Διεθνούς Δικαίου που ισχύουν στην Ελλάδα.
ΕΠΙΣΗΜΑΝΣΗ
Ορισμένα αναρτώμενα από το διαδίκτυο κείμενα ή εικόνες (με σχετική σημείωση της πηγής), θεωρούμε ότι είναι δημόσια. Αν υπάρχουν δικαιώματα συγγραφέων, παρακαλούμε ενημερώστε μας για να τα αφαιρέσουμε. Επίσης σημειώνεται ότι οι απόψεις του ιστολόγιου μπορεί να μην συμπίπτουν με τα περιεχόμενα του άρθρου. Για τα άρθρα που δημοσιεύονται εδώ, ουδεμία ευθύνη εκ του νόμου φέρουμε καθώς απηχούν αποκλειστικά τις απόψεις των συντακτών τους και δεν δεσμεύουν καθ’ οιονδήποτε τρόπο το ιστολόγιο.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου